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ABSTRACT

We present an innovative design of a vertical transparent multizone furnace which can operate in the
temperature range of 25 °C to 750 °C and deliver thermal gradients of 2 °C/cm to 45 °C/cm for the commercial
applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature
control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile
over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for
each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts
for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained
under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal
growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques,
and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency
and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for
the determination of process parameters to optimize crystal growth conditions.

1.0 INTRODUCTION

One of the fundamental variables in crystal growth applications is the tuning of the thermal gradient, we
present an innovative multizone transparent furnace design which allows precise control of the thermal field. The
features of the furnace, from the standpoint of technical merit, which make it attractive are its transparency and
ease of programming the desired thermal profile. The transparency feature of the furnace lends it the commercial
potential for on-line quality control of crystal growth. The scientific application of the furnace is crystal growth of
acousto-optic optoelectronic materials such as lead and mercurous halides, nonlinear optics, photonics, low
temperature semiconductors and organic crystals, which span the temperature range of 25 °C to 750 °C.

For applications to the growth of bulk single crystal growth, it has been widely recognized by many
investigators [1-4] that the thermal field affects the crystalline quality. These applications stem primarily from
crystals grown by directional solidification for which the macroscopic shape of the solid-liquid interface is used as
feedback for quantification of the localized thermal gradient. Though planar interfaces are preferable from the
standpoint of minimization of thermal stresses [1], a convex interface may be beneficial for some applications.
Thus, there exists benefits for tailoring the thermal profile to achieve certain desired outcomes.

Traditionally, crystals are grown in a two zone Bridgman furnace which provides two temperature baths, a
hot and a cold zone, with a thermal gradient between the two zones. Chang and Wilcox [4] showed that the
sensitivity of the interface shape can be decreased by inserting a layer of insulation between the cold and hot zone.
The insulated layer causes the heat transfer to be unidirectional near the solid-liquid interface; this results in a
nearly flat interface. Although this approach is desirable, the insulation layer blocks the view of the solid-liquid
interface, which results in the loss of vital information. We introduce the design of a transparent eight zone
furnace which allows the tailoring of thermal gradients. Due to its versatility, multiple gradients can be achieved
whereby the heat transfer can be made unidirectional over a segment, without the use of insulation, thus preserving
the transparency of the furnace. In addition to directional solidification applications, this furnace is useful for
crystal growth by the physical vapor transport process which requires a thermal profile with a “hump” used to
prevent spontaneous nucleation. This thermal profile has been used by Hartmann and Schonherr [5, 6] to measure
crystal growth rates by relaxation. We present the design of the furnace and show thermal profiles of interest for
both directional solidification as well as physical vapor transport used in applications to grow crystals.



2.0 EXPERIMENTAL DESIGN

2.1 Innovative Furnace Design

The basic characteristic of a crystal growth furnace is a device that allows a uniform thermal gradient to
be established inside an enclosure with optimum temperature stability. In addition, this device should allow a
range of thermal gradients to be set-up in order to allow optimization of crystal growth parameters, an important
feature for directional solidification applications [7, 8]. Through several iterations, Batur et. al. [9,10] , we have
constructed an eight zone furnace, shown in Figure 1, that fulfills our objectives. This furnace consists of two
concentric quartz cylinders (high optical grade quartz ‘GE-214"), of height 52 cm, inner diameter of 4.3 cm with
wall thickness 3mm, and outer diameter of outer cylinder of 6.8 cm with wall thickness of 2 mm . A spiral helical
groove, of equal depth and width of 1.27 mm, is imbedded on the outer surface of the inner cylinder with constant
pitch. The heating kanthal wires are imbedded as a continuous coil on the outer surface of the inner cylinder. This
allows the heat flux to be nearly uniform azimuthally; in addition the quartz tube act as a low pass filter to damp
high frequency noise from the power supply. The outer cylinder which acts as an insulator is split axially, thus
consists of two sections which allows for ease of instrumentation. The connection from the furnace, approximately
1.25 to 2 cm from the outer cylinder, to the main power supply requires the joining of the kanthal wire to 99% pure
nickel by butt welding. The lower resistance of the nickel minimizes heat loss to the ambient environment. The
heating elements (A-1, Kanthal wire) are placed into the spiral ground groove of the inner cylinder in a manner
which minimizes the gap between heating elements.
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Figure 1- Schematic diagram of the furnace with ampoule and its associated hardware, cross sectional view shows
location for wall temperature measurements.

The optimum length of the zones is selected to allow maximum power input for a given coil in order to achieve a
certain temperature range. Whereas, the optimal pitch of the heater wires for each zone is selected such that
maximum visibility is achieved through the heating coils. This feature makes the furnace useful for flow
visualization studies as demonstrated by Lan et.al. [11]. The heating zone lengths necessary to meet our criteria
are as follows: top and bottom zones of equal lengths Z, = Z, = Z; =Z; = 8.0 cm, and equal lengths of the inner
four zones: Zy = Z, = Zs =Zs = 5.0 cm. This heating arrangement can provide an operating range from 25 °C to
750 °C and thermal gradients from 2 °C/cm to 45 °C/cm.



2.2 Temperature Control --- Hardware Implementation

The furnace zone temperatures are measured on the outside wall of the inner quartz tube with K type
thermocouples. The thermocouple beads are of 0.5 mm in diameter and they are housed inside the small blind
holes which are machined on the outside surface of the quartz tube. The positioning of thermocouples in this
fashion insures that the beads are at equal distance from the centerline of the furnace. Therefore, the temperatures
are controlled at equidistant locations with respect to the centerline. The measured temperatures are cold junction
compensated and digitized by a Keithley analog to digital converter. The conversion resolution is 12 bits and,
therefore, based on 0 - 1000 °C temperature range the smallest amount of temperature change that the
measurement system can detect is about 0.25 °C,

The power inputs to heating zones are delivered through eight Copley servo power amplifiers. A 12 bit
digital to analog (D/A) card from Keithley supplies a control voltage of 0 - 10 V to each servo amplifier. Since
the D/A card is of 12 bits, a minimum amount of voltage change that the D/A card can send to the servo
amplifier is about 2.5 mV. This effectively defines the resolution of the control signal. The servo amplifier can
provide up to 500 W power to each heating zone. The gain of each amplifier is set to a level such that the (0- 10) V
input from the D/A board corresponds to (0 - V) Volts where V, is the supply voltage. There are two Hewlett
Packard regulated DC power supplies, connected in parallel and providing up to 8000 W of power to heating
zones through power amplifiers. The main advantage of using a DC power supply is the elimination of power
supply induced disturbances. These disturbances are inherent to an AC power supplied furnace. This is due to the
fact that there are basically two different ways that one can use to deliver the power from an AC source to the
furnace in a regulated manner. One way is based on changing the power activation point within each cycle of the
AC voltage. Since this implies a sudden current change to the heater within each cycle, the resulting effect is the
electrical noise due to inductive effects. The second type of systems use zero crossing and duty cycle modulation
where the duty cycle is defined as the ratio between the (power on) time to (power on + plus power off) time.
Under this system, the heating zone effectively operates under ON-OFF control and if the duty cycle is small this
ON-OFF type power regulation introduces its own disturbance into the thermal dynamics. The DC power supply
completely eliminates the power supply induced disturbances. A schematic that shows the main features of the
hardware is also given in Figure 1.

2.3 Temperature Control --- Software Implementation and Thermal Model

The temperature of each zone is controlled by a self-tuning PI (Proportional - Integral) control algorithm.
There are two kind of disturbances that require the self-tuning control action. The first group is due to the motion
of the ampoule and the interface which change the thermal dynamics of the heating zone because of changes of
thermal inertia within the zone during motion. The second disturbance is caused by the inevitable zone to zone
heat exchange since the heating zones are not thermally insulated. At each sampling instant the temperature
control algorithm first updates the thermal model of the zone so that the current input output data fit the model in a
least squares sense. We assume the following dynamic model for the purpose of controller design

T(t) = A. T(t- 1) + B.u(t - ) +e(t) (1)

Where u,T€R® are the process inputs and the measured zone temperatures respectively and e(t)eR® indicates the
inevitable zone to zone thermal interaction on the temperatures. The matrices A,BeR®® define the thermal
dynamics of the system. The process input is determined by the temperature controller and it is the energy flow
into eight heating zones, i.e., u=(uy,u,,...,us)” . Once the thermal model is updated, the parameters of the PI
controller is modified in order to take into account the most recent changes in thermal dynamics. The model
updating is based on the multivariable Least Squares criterion, i.e., at each sampling instant the model matrices A
and B are updated such that the residuals are minimum, i.e., the following identification performance index is
minimum :

Vpp = trace{arg; ; min[>_&(k).e"(k)]} @),
k=1

where the residual of the model is given by
ek)=T{t)-A.T(t-D-B.u(t-1) @) .



The modification of the PI control parameters is based on the eigenvalue placement whereby the PI control
parameters are changed such that the control system generates the fastest corrective response to the disturbances
without causing overshoot or undershoot in the zone temperature. The details of the algorithm can be found in

[12].
3.0 ENERGETICS AND MEASUREMENTS OF THERMAL PROFILES

3.1 Relationship between Set-points and Measured Temperatures

A given temperature profile in the furnace is established by setting eight discrete temperatures, T\, T,, Ts,
..... Tg, at the midpoint of each zone on the outer surface of the inner cylinder. Previous designs in which holes
were drilled along the axis of the inner tube suffered from significant heat loss which prevented a uniform thermal
field inside the furnace. When a given zone, Z; is activated at a temperature T;, the control system set-up a heat
flux distribution, ¢"(8,z) af r = Ro on the outer surface of the inner cylinder. Some of this heat is lost and the

remaining is transmitted inside the furnace which results in thermal equilibrium due to contributions of the heat
flow modes, namely, conduction, convection , and thermal radiation. Since the temperature along the inside wall
(r =Ri) can be readily measured, the imposed boundary condition may be denoted by the temperature distribution

T =T(r =R,,0, z) instead of the heat flux. In order to ascertain the relationship between set-point temperatures

and the temperatures inside the furnace, we use a calibrated NIST-Standard type S thermocouple to measure the
thermal profile. Since we have air inside the furnace, fundamentally the temperature profile is influenced by
buoyancy induced flows due to density gradients, this problem may be posed as follows:
For a set-point temperature, T; which establishes a surface temperature

T=T(0 ,z) atr=R, (4),
along the inside wall of the inner cylinder for a given zone Z;, buoyancy induced flows will ensue inside the
furnace when the axial heat loss along the wall creates unstably stratified air layers. This heat loss causes a
gaussian-like temperature distribution for the individual inner zones of the furnace Z,-Z;. The density of air, a
homogeneous fluid, is a function of temperature and pressure,

pzp(RYW ).
Within first order approximation the effect of pressure may be neglected so that,

2
p=po +§§[T— Toj+ J %g (T-To) +.. ©.
The subscript o indicates a mean value, due to small variation of the density with temperature, second order
derivatives and higher may be neglected. Regions in which the density field becomes unstably stratified, due to an
adverse density field variation from equation 6, will give rise to a flow field which satisfies the conservation of
mass, balance of momentum, and conservation of energy as follows:

Vel/=0 (7
Py VP i 4p E @
Dt
—DI=a VT (9.
Dt

V represents the flow field, g€ is the gravitational acceleration, 4 and @ are the dynamic viscosity and thermal
diffusivity of the fluid. The density field variation equation (6) gives the coupling between the energy equation (9)
and the momentum equation (8). The solution to this problem can be determined numerically to obtain the
temperature field inside the furnace ,

T=T(r, 0,z t), (10)
as a predictive tool for a prescribed boundary condition. Alternatively, the temperature field can be measured to
obtain the solution. In our case we measured the temperature field and found that azimuthal symmetry, i.e. T(r,z),
in the gradient region for linear temperature profiles is a good approximation. Even though, there is a slight radial



dependence, the temperature profile at the centerline, T=T(z) at r=0, gives a good indication of the temperature
gradient.

3.2 The elements of thermal profile

The measured centerline thermal profile consists of a functional combination of the profile of individual
zones. Figure 2, shows the corresponding thermal profile for a set point temperatures of T=373 °C applied at each
zone individually, the origin of the coordinate system is at the top of the furnace. These profiles correspond to one
zone in operation, while keeping the other zones off. Since zone 1 is near the top, the heat loss near the top of the
quartz tube is minimal. There is a local temperature maximum in zone 1 which decreases exponentially toward
the bottom of the furnace. In contrast, note that heat loss, for all the zones, along the axial direction towards the
top of the furnace increases as the zone distance from the top of the furnace increases. This effect of heat loss is
augmented by the Rayleigh-Taylor instability which occurs due to unstable air density stratification, which is
shown by the scatter of data near the top region, illustrated more clearly for zone 6. This convective flow situation

denoted by ¥ in equation (8) occurs because the air density decreases, above the location of the maximum
temperature, for example zone 4, this provides a situation where a heavy air layer lies on top of a lighter layer
which gives rise to a convective flow field. The scatter of the data as shown in zone 6 is attributed to this
convective instability. On the other hand , note that toward the bottom of the furnace the temperature profile is
smooth; this is because as the temperature decreases the lighter fluid air elements overlays the heavier elements
which provide a stable situation. Thus, there is no convective flow. The gaussian-like wall temperature
distribution as shown in our furnace has similar effect on driving buoyancy induced convection as the case of a
heat source at the bottom of the furnace [13] in which the walls would either have a linear imposed temperature
gradient or be insulated.

The temperature profiles in Figure 2 showed the one dimensional (1-D) behavior of the thermal field at
the centerline, however, for a given axial location (z) it is likely that there exists 3-D thermal surfaces in the
(7,6) plane. In order to investigate this likelihood, in addition to the centerline we also probed the inside wall of
the furnace to permit a 3-D reconstruction of the temperature field. In contrast to the measurements in Figure 2
which used an AC based power system (kanthal wire diameter .125cm), we switched to a DC based system with
different kanthal heating wire diameter .081cm, hence different resistance. Using the same set-point as before 373
°C, we obtained the same trends in zone 4 shown in Figure 3, however, the magnitude of the response temperature
in the furnace varied. The wall temperatures were measured at the z-plane which corresponds to 0° (Right), 90°

(Rear),
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Figure 2- Thermal profile characteristics of the furnace illustrating the behavior of each zone for the same set-point
temperature, T=373°C. Top numerical numbers indicate zone set-point temperatures (°C), bottom numbers inside
plot indicate location of boundaries between zones.

180° (Left), 270° (Front), respectively as shown in Figure 1. The results show that maximum deviation from the
centerline temperature occurs in the neighborhood of the local maximum z=25 cm of the thermal profile. A 3-D
reconstruction shows that the thermal surface corresponds to a skewed paraboloid of revolution at z=25 cm. Note
that near the top of the furnace z < 19 cm, the centerline temperature becomes higher than the wall temperatures.
This trend is attributed to intense convective motion as we had discussed earlier. In contrast for z > 30 cm in
which there is no convective motion, the centerline temperature is approximately the same as the wall
temperatures. The isothermal surface for the location z = 35 cm would correspond to a skewed hemisphere, note
that the centerline temperature is greater than most of the wall temperatures for this region. Much of the
skewdness in the 3-D representation stems from the helical path of the heating wire which will inevitably cause
local temperature nonuniformity on the wall of the furnace. Since the majority of practical thermal profiles for
crystal growth is obtained by fixing a hot and a cold zone similar to the region z > 30 cm, the centerline
temperature profile would give a good representation of the thermal gradient. Though, we have shown the furnace
response when a single zone is activated, the effect of activating two or three zones simultaneously using the same
set-point is to broaden the peak of the thermal profile such that a flat isothermal region is obtained.
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Figure 3 - Comparison of wall and centerline temperatures when only zone 4 is activated for a set-point of 373°C.
Set-point temperatures of 0 °C indicate no power supplied to zones.

Given the individual performance of the various zones, operation of all the zones in synchronization
results in nearly isothermal conditions over a segment, 25cm< z < 35cm, of the furnace shown in Figure 4. All
the zones were set to the same temperature for each case, slight adjustments can be made to achieve the desired
level of isothermality. Crystal growth under practical conditions requires specific thermal profiles, we show
various profiles measured at the centerline as well as the wall to give an indication on how well the furnace
projects the imposed thermal boundary conditions. An example of a linear thermal gradient is shown in Figure 5.
This thermal gradient is necessary for the growth of crystals via directional solidification. The wall temperature
gradient in the region of interest 16 cm< z <25 cm is approximately the same as that of the centerline (20 °C/cm)
The growth of crystals by physical vapor transport necessitates a thermal profile with a “hump” shown in Figure 6.
This case illustrates that maximum deviation of the thermal gradient occurs in the region of the “hump”, 20cm <
z < 28 cm. The centerline temperature gradient for that region is 17°C/cm, whereas the average wall gradient is
31°C/em. As we had discussed earlier, some applications necessitate localized heat transfer in one direction, the
multiple gradient shown in Figure 7 is an alternative for obtaining the same effect as insulation while preserving
the transparency of the furnace. The isothermal region occurs for 23 cm < z < 29 cm, and centerline thermal
gradients of 25 °C/cm and 20 °C/cm corresponding to the regions 15 cm < z < 20 cm and 30cm < z £ 39cm
respectively. There is good agreement between the wall and centerline temperatures for those regions.
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Figure 5 - Thermal profile used for crystal growth by directional solidification, dT/dz = 20C/cm at

l6cm< z £25¢cm.




460 Z-1,240 Z-2,240 Z-3,280 Z-4,460 7-6,340 Z-8,340 2-7,340 2-8, 340
426
400

376

IO

360

326 |

300

276 4

T. Temperature {C)

260 {

226 4

200

176 4

160 8 18 P21 28 a1 36 _44 B2
0 3 10 1% 20 26 30 36 40 45 50 33

z,Location {cm)

Figure 6 - Nonlinear thermal profile used for crystal growth by physical vapor transport, local temperature gradient
at the centerline in the vicinity of 22cm < z < 27cm is 17°C/cm.

525 ___ Z-1,400 Z-2,400 2.3,300 7-4,300 7.6,300 Z-8,160___ Z-7,160 -8, 160

600
476 {
4E0 {
426
400

376

350 &
326 §
300 |

276

T. Temperature (C)

260
226

200

176 {
180

126 8. ; 18 . . f 21, .} 28 a1 36 . Y 8 62
0 5 10 16 20 26 30 36 40’ 486 60 66

z,Location (cm)

Figure 7 - Ilustration of multiple gradient capability with isothermal region.



We have discussed in detail the furnace performance under no load conditions. The self-tuning
temperature control is designed to account for zone to zone interactions. However, the thermal profile is preserved
even with the presence of an ampoule for crystal growth. To show the response of the furnace under load
conditions, we use the same condition as shown in Figure 5 for the linear thermal gradient. Note that the presence
of an ampoule damps convective flows in the furnace. Figure 8 shows the measured thermal profile on the surface
of an ampoule, 1.7 cm diameter and length 35.0 cm, containing lead bromide with a melting point of 373 ° C.
Comparison of the location of the solid-liquid interface to that indicated by the thermal profile shows reasonable
agreement. This provides a calibration point for our thermal profile measurements. The result indicates that the
control system accounts for thermal load conditions. Thus the thermal gradient projected by the furnace under no
load conditions measured at the centerline corresponds to the surface input temperature at the ampoule wall. This
implies that predetermined boundary conditions can be used as input to the furnace to study the dynamics of crystal
growth. The ability of the self-tuning control system of the furnace to tailor thermal profiles represents an
innovative concept that will find commercial applications for optimizing crystal growth conditions.
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Figure 8 - Comparison of projected temperature profile under load conditions due to presence of ampoule filled
with lead bromide, to no load conditions represented by centerline profile of the solid curve, dT/dz = 20°C/cm
16cm < z < 25cm. Location of observed solid-liquid interface at the melting point of lead bromide, 373°C,
serves as a calibration point (see legend) for the system.

4.0 SUMMARY AND CONCLUSIONS

We have introduced an innovative concept of a transparent multizone furnace which uses a self-tuning
temperature control system for the commercial application to crystal growth. This furnace operates in the
temperature range of 25 - 750 °C . The self-tuning control accounts for zone to zone thermal interactions. The
control system adjusts for thermal load, thus thermal profiles can be tailored prior to crystal growth and thermal
gradients in the range of 2 °C/cm to 45°C/cm can be obtained. The operation of the furnace is based on the set-up
of eight discrete temperatures over eight zones which result in a functional combination of heat flux distribution
whose response is quantified from temperature profile measurements. The combination of the temperature profiles
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for a given set-point temperature is shown to give temperature profiles of technological interest for the growth of
crystals. These profiles include a range of thermal gradients for directional solidification applications, growth by
vapor transport techniques, as well as multiple gradient applications. The innovation of the multizone crystal
growth furnace is suited for crystal growth of a wide class of materials including, acousto-optic optoelectronics,
photonics, low temperature semiconductors and organic materials. The hallmark of this furnace technology is its
transparency and its ability to deliver precise thermal profiles.
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